Abstract

Chromatographic separation, analysis and characterization of complex highly polar analyte mixtures can often be very challenging using conventional separation approaches. Analysis and purification of hydrophilic compounds have been dominated by liquid chromatography (LC) and ion-exchange chromatography (IC), with sub/supercritical fluid chromatography (SFC) moving toward these new applications beyond traditional chiral separations. However, the low polarity of supercritical carbon dioxide (CO2) has limited the use of SFC for separation and purification in the bioanalytical space, especially at the preparative scale. Reaction mixtures of highly polar species are strongly retained even using polar additives in alcohol modifier/CO2 based eluents. Herein, we overcome these problems by introducing chaotropic effects in SFC separations using a nontraditional mobile phase mixture consisting of ammonium hydroxide combined with high water concentration in the alcohol modifier and carbon dioxide. The separation mechanism was here elucidated based on extensive IC-CD (IC couple to conductivity detection) analysis of cyclic peptides subjected to the SFC conditions, indicating the in situ formation of a bicarbonate counterion (HCO3-). In contrast to other salts, HCO3- was found to play a crucial role acting as a chaotropic agent that disrupts undesired H-bonding interactions, which was demonstrated by size-exclusion chromatography coupled with differential hydrogen-deuterium exchange-mass spectrometry experiments (SEC-HDX-MS). In addition, the use of NH4OH in water-rich MeOH modifiers was compared to other commonly used basic additives (diethylamine, triethylamine, and isobutylamine) showing unmatched chromatographic and MS detection performance in terms of peak shape, retention, selectivity, and ionization as well as a completely different selectivity and retention behavior. Moreover, relative to ammonium formate and ammonium acetate in water-rich methanol modifier, the ammonium hydroxide in water additive showed better chromatographic performance with enhanced sensitivity. Further optimization of NH4OH and H2O levels in conjunction with MeOH/CO2 served to furnish a generic modifier (0.2% NH4OH, 5% H2O in MeOH) that enables the widespread transition of SFC to domains that were previously considered out of its scope. This approach is extensively applied to the separation, analysis, and purification of multicomponent reaction mixtures of closely related polar pharmaceuticals using readily available SFC instrumentation. The examples described here cover a broad spectrum of bioanalytical and pharmaceutical applications including analytical and preparative chromatography of organohalogenated species, nucleobases, nucleosides, nucleotides, sulfonamides, and cyclic peptides among other highly polar species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.