Abstract
We consider skew product dynamical systems [Formula: see text] with a (generalized) baker transformation [Formula: see text] at the base and uniformly bounded increasing [Formula: see text] fibre maps [Formula: see text] with negative Schwarzian derivative. Under a partial hyperbolicity assumption that ensures the existence of strong stable fibres for [Formula: see text], we prove that the presence of these fibres restricts considerably the possible structures of invariant measures — both topologically and measure theoretically, and that this finally allows to provide a “thermodynamic formula” for the Hausdorff dimension of set of those base points over which the dynamics are synchronized, i.e. over which the global attractor consists of just one point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.