Abstract

A nonlinear model was proposed to study chaotic vibrations of vocal folds with a unilateral vocal polyp. The model study found that the vocal polyp affected glottal closure and caused aperiodic vocal fold vibrations. Using nonlinear dynamic methods, aperiodic vibrations of the vocal fold model with a polyp were attributed to low-dimensional chaos. Bifurcation diagrams showed that vocal polyp size, stiffness, and damping had important effects on vocal fold vibrations. An increase in polyp size tended to induce subharmonic patterns and chaos. This study provides a theoretical basis to model aperiodic vibrations of vocal folds with a laryngeal mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call