Abstract
We study the dynamical state of the one-dimensional noisy generalized Kuramoto-Sivashinsky (gKS) equation by making use of time-series techniques based on symbolic dynamics and complex networks. We focus on analyzing temporal signals of global measure in the spatiotemporal patterns as the dispersion parameter of the gKS equation and the strength of the noise are varied, observing that a rich variety of different regimes, from high-dimensional chaos to pure stochastic behavior, emerge. Permutation entropy, permutation spectrum, and network entropy allow us to fully classify the dynamical state exposed to additive noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.