Abstract

Abstract This study describes the intra- to interannual variability of the Atlantic meridional overturning circulation (AMOC) and the relative dynamical contributions to the total variability in an eddy-resolving 1/12° resolution ocean model. Based on a 53-yr-long hindcast and two 4-yr-long ensembles, we assess the total AMOC variability as well as the variability arising from small differences in the ocean initial state that rapidly imprints on the mesoscale eddy fields and subsequently on large-scale features. This initial-condition-dependent variability will henceforth be referred to as “chaotic” variability. We find that intra-annual AMOC fluctuations are mainly driven by the atmospheric forcing, with the chaotic variability fraction never exceeding 26% of the total variance in the whole meridional Atlantic domain. To understand the nature of the chaotic variability we decompose the AMOC (into its Ekman, geostrophic, barotropic, and residual components). The barotropic and geostrophic AMOC contributions exhibit strong, partly compensating fluctuations, which are linked to chaotic spatial variations of currents over topography. In the North Atlantic, the largest chaotic divergence of ensemble members is found around 24°, 38°, and 64°N. At 26.5°N, where the AMOC is monitored by the RAPID–MOCHA array, the chaotic fraction of the AMOC variability is 10%. This fraction is slightly overestimated with the reconstruction methodology as used in the observations (∼15%). This higher fraction of chaotic variability is due to the barotropic contribution not being completely captured by the monitoring system. We look at the strong AMOC decline observed in 2009/10 and find that the ensemble spread (our measure for chaotic variability) was not particularly large during this event. Significance Statement The ocean is characterized by ubiquitous swirls (eddies) with diameters ranging from more than 100 km (low latitudes) to a few tens of kilometers (high latitudes). There is limited predictability of the timing and location of such eddies. They introduce unpredictable (“chaotic”) variability, which affects the ocean circulation on a wide range of spatial and temporal scales. Any observations of ocean currents contain a fraction of chaotic variability. However, it is, in general, not possible to quantify this chaotic variability from observations. Here we use a set of simulations performed with a state-of-the-art ocean computer model to estimate the fraction of chaotic variability in the amount of warm northward flowing near-surface seawater that delivers large amounts of heat to the North Atlantic, known to scientists as the Atlantic meridional overturning circulation (AMOC). We find that about 10%–25% of the AMOC variance is likely to be chaotic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call