Abstract

The prediction of future values of a time series generated by a chaotic dynamical system is a challenging task. Recently, the use of recurrent neural networks (RNN) models appears. An evolving neural network (ERNN) is proposed for the prediction of chaotic time series, which estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by evolutionary algorithms. The effectiveness of ERNN is evaluated by using four benchmark chaotic time series data sets: Lorenz series, logistic series, Mackey-Glass series and real-world sun spots series. Our experiments indicate that the prediction performances of ERNN are better than the other methods exiting in the bibliography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.