Abstract
There are three independent phenomena that compete to determine the line shapes of third sound resonances in a circular cavity. First, anharmonic terms in the hydrodynamic equations of motion lead to the usual hysteresis on a mugti-valued response function. Second, wave coupling to vortices pinned in the film modify the resonant frequency as changes in the persistent current are induced. Finally, nonlinear dissipation can lead to saturation. The first two of these have been observed to resugt in continuous (not just transient) temporal behavior of the resonance amplitude with a fixed drive. Both cyclical and chaotic behaviors have been observed. The effects are dependent on the ability of the driven wave to either accelerate or decelerate the persistent current onto different amplitude branches of the mugti-valued resonance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.