Abstract

Electroencephalogram (EEG) signals captured from brain activities demonstrate chaotic features, and can be simulated by nonlinear dynamic time series outputs of chaotic systems. This article presents the research work of chaotic system generator design based on artificial neural network (ANN), for studying the chaotic features of human brain dynamics. The ANN training performances of Nonlinear Auto-Regressive (NAR) model are evaluated for the generation and prediction of chaotic system time series outputs, based on varying the ANN architecture and the precision of the generated training data. The NAR model is trained in open loop form with 1,000 training samples generated using Lorenz system equations and the forward Euler method. The close loop NAR model is used for the generation and prediction of Lorenz chaotic time series outputs. The training results show that better training performance can be achieved by increasing the number of feedback delays and the number of hidden neurons, at the cost of increasing the computational load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.