Abstract
We have obtained a general unstable chaotic solution of a typical nonlinear oscillator in a double potential trap with weak periodic perturbations by using the direct perturbation method. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding chaotic region and orbits in parameter space are described by numerical simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.