Abstract

Shor's factoring algorithm, believed to provide an exponential speedup over classical computation, relies on finding the period of an exactly periodic quantum modular multiplication operator. This exact periodicity is the hallmark of an integrable system, which is paradoxical from the viewpoint of quantum chaos, given that the classical limit of the modular multiplication operator is a highly chaotic system that occupies the “maximally random” Bernoulli level of the classical ergodic hierarchy. In this work, we approach this apparent paradox from a quantum dynamical systems viewpoint, and consider whether signatures of ergodicity and chaos may indeed be encoded in such an “integrable” quantization of a chaotic system. We show that Shor's modular multiplication operator, in specific cases, can be written as a superposition of quantized A-baker's maps exhibiting more typical signatures of quantum chaos and ergodicity. This work suggests that the integrability of Shor's modular multiplication operator may stem from the interference of other “chaotic” quantizations of the same family of maps, and paves the way for deeper studies on the interplay of integrability, ergodicity, and chaos in and via quantum algorithms. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.