Abstract
Stochastic resonance is a statistical phenomenon that has been observed in periodically modulated, noise-driven, bistable systems. The characteristic signatures of the effect include an increase in the signal-to-noise of the output as noise is added to the system, and exponentially decreasing peaks in the probability density as a function of residence times in one state. Presented are the results of a numerical simulation where these same signatures were observed by adding achaotic driving term instead of a white noise term. Although the probability distributions of the noise and chaos inputs were significantly different, the stochastic and chaotic resonances were equal within the experimental error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.