Abstract

In this paper we analyze a fundamental issue which directly impacts the scalability of current theoretical neural network models to applicative embodiments, in both software as well as hardware. This pertains to the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the consequent chaotic manifestations in the absence of proper conditioning. The latter concern is particularly significant since the computational inertia of neural networks in general and our dynamical learning formalisms manifests itself substantially, only in massively parallel hardward—optical, VLSI or opto-electronic. We introduce a mathematical framework for systematically reconditioning additive-type models and derive a neuro-operator, based on the chaotic relaxation paradigm whose resulting dynamics are neither “concurrently” synchronous nor “sequentially” asynchronous. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are also computed to characterize the network dynamics and to ensure that throughput-limiting “emergent computational chaos” behavior in models reconditioned with concurrently asynchronous algorithms was eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call