Abstract
Ultrasonic devices are widely used in robotics as exteroceptive sensors for ranging measurements. Robotic applications often involve a large number of sonars operating concurrently, giving rise to the phenomenon of crosstalk. In this work, the problem of improving performance of ultrasonic devices in the presence of crosstalk and noise is addressed. In order for each device to discriminate its own echo, chaos is exploited to create unique firing sequences. In particular, the firing scheme described in this work is inspired to a modulation scheme used in chaotic communications, called chaotic pulse position modulation (CPPM). The evaluation of the time of flight is performed by a detection filter. The experimental setup consists of a Polaroid 600 electrostatic transducer driven by a continuous CPPM modulator. Experimental results confirm the suitability of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.