Abstract
We study a class of singular dynamical systems which generalise the classical N-centre problem of Celestial Mechanics to the case in which the configuration space is a Riemannian surface. We investigate the existence of topological conjugation with the archetypal chaotic dynamical system, the Bernoulli shift. After providing infinitely many geometrically distinct and collision-less periodic solutions, we encode them in bi-infinite sequences of symbols. Solutions are obtained as minimisers of the Maupertuis functional in suitable free homotopy classes of the punctured surface, without any collision regularisation. For any sufficiently large value of the energy, we prove that the generalised N-centre problem admits a symbolic dynamics. Moreover, when the Jacobi-Maupertuis metric curvature is negative, we construct chaotic invariant subsets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.