Abstract

This paper presents a novel binary phase coding scheme for radar pulse compression, which is derived from the logistic-map equation in the chaotic theory. The proposed logistic-map-based binary phase code (LMBPC) makes it feasible to achieve superior performance in detection range. The logistic-map equation in the chaotic theory is range resolution and Doppler tolerance simultaneously. The properties of LMBPC, including autocorrelation function, ambiguity diagram, performance under various noisy backgrounds, and the maximum Doppler tolerance, have been analyzed and compared to those of the conventional schemes, such as linear FM. The properties of LMBPC are very similar to those of the random binary codes. However, the generation of LMBPC is much simpler, and the available LMBPC is virtually infinite and not limited by the length of code. A parallel correlator structure for the pulse compression filter has also been introduced, which serves to improve the Doppler tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.