Abstract

Phase transitions are being used increasingly to probe the collective behaviors of social human systems. In this study, we propose a different way of investigating such transitions in a human system by establishing a two-sided minority game model. A new type of agents who can actively transfer resources are added to our artificial bipartite resource-allocation market. The degree of deviation from equilibria is characterized by the entropy-like quantity of market complexity. Under different threshold values, Qth, two phases are found by calculating the exponents of the associated power spectra. For large values of Qth, the general motion of strategies for the agents is relatively periodic whereas for low values of Qth, the motion becomes chaotic. The transition occurs abruptly at a critical value of Qth. Our simulation results were also tested based on human experiments. The results of this study suggest that a chaotic-periodic transition related to the quantity of market information should exist in most bipartite markets, thereby allowing better control of such a transition and providing a better understanding of the endogenous emergence of business cycles from the perspective of quantum mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.