Abstract

The main object of this paper is to study the bifurcation, chaotic pattern and traveling wave solution of the perturbed stochastic nonlinear Schrödinger equation with generalized anti-cubic law nonlinearity and spatio-temporal dispersion. A traveling wave transformation is used to simplified the perturbed stochastic nonlinear Schrödinger equation into ordinary differential equation. The dynamic behavior of two-dimensional planar dynamical systems and their perturbed systems are studied, and bifurcation, phase portrait, and Poincaré section are presented. Furthermore, traveling wave solutions included Jacobian function solutions, trigonometric function solutions and hyperbolic function solutions are constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.