Abstract
Support vector machine (SVM) is a widely used pattern classification method that its classification accuracy is greatly influenced by both kernel parameter setting and feature selection. Therefore, in this study, to perform parameter optimization and feature selection simultaneously for SVM, we propose an improved whale optimization algorithm (CMWOA), which combines chaotic and multi-swarm strategies. Using several well-known medical diagnosis problems of breast cancer, diabetes, and erythemato-squamous, the proposed SVM model, termed CMWOAFS-SVM, was compared with multiple competitive SVM models based on other optimization algorithms including the original algorithm, particle swarm optimization, bacterial foraging optimization, and genetic algorithms. The experimental results demonstrate that CMWOAFS-SVM significantly outperformed all the other competitors in terms of classification performance and feature subset size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.