Abstract

Discrete dynamical systems theory is applied to the dynamic stability analysis of a simplified hopping robot. A Poincare return map is developed to capture the system dynamics behavior, and two basic nondimensional parameters which influence the systems dynamics are identified. The hopping behavior of the system is investigated by constructing the bifurcation diagrams of the Poincare return map with respect to these parameters. The bifurcation diagrams show a period-doubling cascade leading to a regime of chaotic behavior, where a strange attractor is developed. One feature of the dynamics is that the strange attractor can be controlled and eliminated by tuning an appropriate parameter corresponding to the duration of applied hopping thrust. Physically, the collapse of the strange attractor leads to globally stable uniform hopping motion. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.