Abstract

AbstractChaotic mixing by oscillating a Stokeslet in a circular Hele-Shaw microffluidic device is presented in this article. Mathematical modeling for the induced flow motions by moving a Stokeslet along the x-axis is derived using Fourier expansion method. The solution is formulated in terms of the velocity stream function. The model is then used to explore different stirring dynamics as function of the Stokeslet parameters. For instance, the effects of using various oscillation amplitudes and force strengths are investigated. Mixing patterns using Poincaré maps are obtained numerically and have been used to characterize the mixing efficiency. Results have shown that, for a given Stokeslet’s strength, efficient mixing can be obtained when small oscillation amplitudes are used. The present mixing platform is expected to be useful for many of biomicrofluidic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.