Abstract
Random Boolean networks have been used as simple models of gene regulatory networks, enabling the study of the dynamic behavior of complex biological systems. However, analytical treatment has been difficult because of the structural heterogeneity and the vast state space of these networks. Here we used mean field approximations to analyze the dynamics of a class of Boolean networks in which nodes have random degree (connectivity) distributions, characterized by the mean degree k and variance D. To achieve this we generalized the simple cellular automata rule 126 and used it as the Boolean function for all nodes. The equation for the evolution of the density of the network state is presented as a one-dimensional map for various input degree distributions, with k and D as the control parameters. The mean field dynamics is compared with the data obtained from the simulations of the Boolean network. Bifurcation diagrams and Lyapunov exponents for different parameter values were computed for the map, showing period doubling route to chaos with increasing k. Onset of chaos was delayed (occurred at higher k) with the increase in variance D of the connectivity. Thus, the network tends to be less chaotic when the heterogeneity, as measured by the variance of connectivity, was higher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.