Abstract

Holographic functional methods are introduced as probes of discrete time-stepped maps that lead to chaotic behavior. The methods provide continuous time interpolation between the time steps, thereby revealing the maps to be quasi-Hamiltonian systems underlain by novel potentials that govern the motion of a perceived point particle. Between turning points, the particle is strictly driven by Hamiltonian dynamics, but at each encounter with a turning point the potential changes abruptly, loosely analogous to the switchbacks on a mountain road. A sequence of successively deepening switchback potentials explains, in physical terms, the frequency cascade and trajectory folding that occur on the particular route to chaos revealed by the logistic map.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call