Abstract

AbstractIn this article, we proposed a new chaotic map and is compared with existing chaotic maps such as Logistic map and Tent map. The value of maximal Lyapunov exponent of the proposed chaotic map goes beyond 1 and shows more chaotic behaviour than existing one-dimensional chaotic maps. This shows that proposed chaotic maps are more effective for cryptographic applications. Further, we are using one-dimensional chaotic maps to generate random time series data and define a method to create a network. Lyapunov exponent and entropy of the data are considered to measure the randomness or chaotic behaviour of the time series data. We study the relationship between concurrence (for the two-qubit quantum states) and Lyapunov exponent with respect to initial condition and parameter of the logistic map which is showing how chaos can lead to concurrence based on such Lyapunov exponents.KeywordsCryptographyLogistic mapLyapunov exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.