Abstract

We present a “master-slave-response” synchronization system of chaotic multiple-quantum-well lasers. And we study the applications of chaotic parallel synchronization for optical logic gates. An injection multiple-quantum-well laser drives two responding systems of multiple-quantum-well lasers to obtain chaotic synchronization while the injection multiple-quantum-well laser can synchronize the responding systems. We present theoretically the constructions of the fundamental all-optical gates based on the parallel synchronization of responding systems and define their computational principle. By modulating the driving light into the responding systems, all-optical logic gates characterizing logic function are realized by synchronizing or unsynchronizing appropriately the two chaotic states of responding systems. We present all-optical XNOR, NOR, NOT logic gates and their logic computational methods. Numerical simulation result validates the feasibility of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.