Abstract

A charged particle kicked from an initial circular orbit around a weakly magnetized Schwarzschild black hole undergoes transient chaotic motion before either getting captured by the black hole or escaping upstream or downstream with respect to the direction of the magnetic field. These final states form basins of attraction in the space of initial states. We provide a detailed numerical study of the basin structure of this initial state space. We find it to possess the peculiar Wada property: each of its basin boundaries is shared by all three basins. Using basin entropy as a measure, we show that uncertainty in predicting the final exit state increases with stronger magnetic interaction. We also present an approximate analytic expression of the critical escape energy for a vertically-kicked charged particle, and discuss how this depends on the strength of the magnetic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.