Abstract
The motion of an individual electron in a FEL in a field configuration consisting of an ideal quadrupole-wiggler field and uniform axial-guide field, is shown to be nonintegrable in Hamiltonian formulations and can become chaotic for certain initial conditions. The presence of chaos, which is induced by the transverse spatial inhomogenieties in the wiggler field; and the self-fields produced by the space charge and current, poses limits on the wiggler field amplitude and the beam size for beam propagation in Free-Electron Laser operation. Upon plotting Poincaré surface-of-section maps, it is shown that the electron dynamics is chaotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.