Abstract

We show that the heat semigroup generated by certain perturbations of the Laplace–Beltrami operator on the Riemannian symmetric spaces of noncompact type is chaotic on their Lp-spaces when 2<p<∞. Both the range of p and the range of chaos-inducing perturbation are sharp. This extends a result of Ji and Weber [17] where it was shown that under identical conditions the heat operator is subspace-chaotic on these spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.