Abstract
This article presents a nonlinear vibration signature study of high-speed defective cylindrical roller bearings under unbalance rotor conditions. Qualitative analysis is conducted considering a spall defect of a specific size on major elements such as outer race, inner race, and rollers. A spring-mass model with nonlinear stiffness and damping is formulated to study the dynamic behavior of the rotor-bearing model. The set of nonlinear differential equations are solved using the fourth-order Runge–Kutta method to predict the characteristics of the discrete spectra and analyze the stability of the system. The results show that higher impulsive forces are generated because of outer race defects than defects in the inner race and roller. This can be explained as every time the roller passes through the defect in the outer race during rotation, the energy is released. However, in the case of both the roller and inner race defects, the impulsive force generated in the load zone is averaged because of the force generated in the unloading zone. The route to chaos from periodic to quasiperiodic response has been observed and analyzed that vibration signature is very much sensitive not only to the defects of bearing components but also to the rotor speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.