Abstract

In this work, we study nonlinear aspects of the deterministic spin dynamics of an anisotropic single-domain magnetic particle at finite temperature modeled by the Landau-Lifshitz-Bloch equation. The magnetic field has two components: a constant term and a term involving a harmonic time modulation. The dynamical behavior of the system is characterized with the Lyapunov exponents and by means of bifurcation diagrams and Fourier spectra. In particular, we explore the effects of the magnitude and frequency of the applied magnetic field, finding that the system presents multiple transitions between regular and chaotic states when varying the control parameters. We also address the temperature dependence and evidence that it plays an important role in these transitions, almost suppressing the chaotic behavior close to the Curie temperature. Finally, we find that the system has hyperchaotic states for specific values of field and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.