Abstract

Performance of chaotic communication in radio-over-fiber (ROF) transmission based on optoelectronic feedback semiconductor lasers is studied numerically. The chaotic carrier is generated by optoelectronic feedback semiconductor lasers, where chaotic communication is realized by synchronizing a receiver laser with a transmitter laser. Transmission quality of different message encoding schemes, including additive chaos modulation (ACM) and on-off shift keying (OOSK), are investigated and compared. In this study, the dispersion and nonlinearity effects in the fiber transmission module and the amplified spontaneous emission noise from the optical amplifiers are considered. In the wireless channel, effects of additive white Gaussian noise, multipath, and path loss are included. To quantitatively study the performance of this chaotic communication system in the ROF transmission, bit-error-rates (BER) of different transmission lengths, message bit-rates, and signal-to-noise ratios are studied. The optimal launched power and message strength that minimize the BER while assuring effective communication security are discussed. While the ACM scheme is shown to perform better in a fiber only configuration, the OOSK scheme shows better immunity to the random effects and waveform distortions presented in the wireless channel.

Highlights

  • Optical chaotic communication has been studied extensively in recent years

  • The chaotic carriers can be generated by semiconductor lasers through optical injection [1, 2, 3], optical feedback [4, 5], optoelectronic feedback [6, 7, 8], and electro-optic feedback [9]

  • To further extend the transmission into a wireless channel, we study the performance of chaotic communication system in a radio-over-fiber (ROF) scenario based on an OEF scheme

Read more

Summary

Introduction

Optical chaotic communication has been studied extensively in recent years. In general, the chaotic carriers can be generated by semiconductor lasers through optical injection [1, 2, 3], optical feedback [4, 5], optoelectronic feedback [6, 7, 8], and electro-optic feedback [9]. To extend the distance of transmission, chaotic communication with transmission through optical fiber based on an electro-optics scheme has been studied [14]. Performance of chaotic communication including transmission in dispersion shifted fibers based on optical feedback system is characterized numerically [15]. To further extend the transmission into a wireless channel, we study the performance of chaotic communication system in a radio-over-fiber (ROF) scenario based on an OEF scheme. We first consider the effect of the fiber module in a chaotic communication system based on optoelectronic feedback laser. The random influences and additional noises from the wireless channel are added and discussed This radio-over-fiber configuration extends the transmission distance, and provides the possible mobility and portability for secured communications

Transmitter and receiver lasers
ACM and OOSK message encoding schemes
Description of the fiber transmission module
Results with fiber transmission module
Description of the wireless channel
Results with wireless channel
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.