Abstract

Considering liquid compressibility, the dynamical behaviors of gas bubble in acoustic field are investigated by regarding water as a work medium. The effects of acoustic frequency, acoustic pressure, initial radius of gas bubble, liquid surface tension, and viscosity coefficient on bubble motion state are numerically simulated. The relationship between cavitation treatment effect and gas bubble motion state is analysed.The results show that when the gas bubble motion is in a chaotic state, it is the most important factor for enhancing acoustic cavitation degradation of organic pollutants ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.