Abstract
Road traffic networks are chaotic and highly complex systems. In this paper, we introduce a dynamic gravity model that characterizes the behaviors of the O-D (origin-destination) traffic, such as equilibrium, period-doubling, chaos, and fractal in discrete time. In cases where the original cost function is used, the trip distribution model might degenerate into an all-or-nothing problem without the capacity constraints. To address this shortcoming, we propose substituting the original cost function with an improved conical volume-delay function. This new function retains some of the properties of the original cost function, and its parameters have the same meaning as those in the original function. Our analysis confirms that the double-constrained dynamic gravity model successfully characterizes complex traffic behavior because of the improved conical volume-delay function. Our analysis further shows that the three-parameter bifurcation diagram based on the period characteristics provides deep insight into the actual state of the road traffic networks. Investigating the properties of the model solutions, we further show that the new model is more effective in addressing the all-or-nothing problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.