Abstract

A three-dimensional (3D) autonomous Morris–Lecar (simplified as M–L) neuron model with fast and slow structures was proposed to generate periodic bursting behaviors. However, chaotic bursting dynamics and coexisting multistable firing patterns have been rarely discussed in such a 3D M–L neuron model. For some specified model parameters, MATLAB numerical plots are executed by bifurcation plots, time sequences, phase plane plots, and 0–1 tests, from which diverse forms of chaotic bursting, chaotic tonic-spiking, and periodic bursting behaviors are uncovered in the 3D M–L neuron model. Furthermore, based on the theoretically constructing fold/Hopf bifurcation sets of the fast subsystem, the bifurcation mechanism for the chaotic bursting behaviors is thereby expounded qualitatively. Particularly, through numerically plotting the attraction basins related to the initial states under two sets of specific parameters, coexisting multistable firing patterns are demonstrated in the 3D M–L neuron model also. Finally, a digitally circuit-implemented electronic neuron is generated based on a low-power microcontroller and its experimentally captured results faultlessly validate the numerical plots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call