Abstract
Chaotic bursting is a fundamental behavior of neurons. In this paper, global and local burst synchronization is studied in a heterogeneous small-world neuronal network of non-identical Hindmarsh–Rose (HR) neurons with noise. It is found that the network can achieve global burst synchronization much more easily than phase synchronization and nearly complete synchronization. Moreover, local burst synchronized clusters have already formed before global burst synchronization happens. We study the effect of the shortcut-adding probability and the heterogeneity coefficient on local and global burst synchronization of the network and find that the introduction of shortcuts facilitates burst synchronization while the heterogeneity has little effect. Moreover, we study the spatiotemporal pattern of the network and find that there is an optimal coupling strength range in which the periodicity of the network is very apparent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.