Abstract

Numerical tensile tests of an elastoplastic cylindrical bar at various high strain rates are performed by the use of a dynamic explicit FEM code (DYNA3D, a public domain version). The effects of mass (inertia) of the body, strain rate and strainrate sensitivity exponent ( m-value) on the deformation pattern and the load curve are investigated. As for the material, strain-dependent nth power work hardening property is given by σ=Kε n(1+ ε ̇ ) m where ε ̇ is strain rate. The range of the prescribed average strain rate is 50–1000/s where the tensile tests with constant average strain rate and with constant tensile velocity are performed. Materials with higher density exert a greater influence on deformation mode at a high strain rate. Even if the tensile speed is less than that of plastic wave propagation, the deformation becomes non-uniform remarkably due to mass effect. It is unexpected that double necking occurs at certain computational conditions. The strain at maximum load point predicted by the numerical simulation does not coincide with the analytically predicted one. Maximum rate of decrease in cross sectional area within the straight portion of the bar is compared with Hart's instability criterion based on the imperfection in the cross section. In high-rate tension over ε ̇ =400/ s , deformation behavior is chaotic in the sense that it varies very sensitively with a trivial change in material properties and/or in the prescribed strain rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.