Abstract
Numerical investigations of the global behavior of a model of the convective flow of a binary mixture in a porous medium are reported. We find a complex behavior characterized by the presence of coexisting periodic, quasiperiodic and chaotic attractors. Bifurcations of periodic solutions and routes to chaos via type-I intermittency and period-doubling bifurcations are described. Boundary crises and band merging crises have also been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.