Abstract

<abstract><p>The generalized q-deformed sinh Gordon equation (GDSGE) serves as a significant nonlinear partial differential equation with profound applications in physics. This study investigates the GDSGE's mathematical and physical properties, examining its solutions and clarifying the essence of the q-deformation parameter. The Sardar sub-equation method (SSEM) and sine-Gordon expansion method (SGEM) are employed to solve this GDSGE. The synergistic application of these techniques improves our knowledge of the GDSGE and provides a thorough foundation for investigating different evolution models arising in various branches of mathematics and physics. A positive aspect of the proposed methods is that they offer a wide variety of solitons, including bright, singular, dark, combination dark-singular, combined dark-bright, and periodic singular solitons. Obtained solutions demonstrate the method's high degree of reliability, simplicity, and functionalization for various nonlinear equations. To better describe the physical characterization of solutions, a few 2D and 3D visualizations are generated by taking precise values for parameters using mathematical software, Mathematica.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.