Abstract

The embedding dimension and the number of nearest neighbors are very important parameters in the prediction of chaotic time series. To reduce the prediction errors and the uncertainties in the determination of the above parameters, a new chaos Bayesian optimal prediction method (CBOPM) is proposed by choosing optimal parameters in the local linear prediction method (LLPM) and improving the prediction accuracy with Bayesian theory. In the new method, the embedding dimension and the number of nearest neighbors are combined as a parameter set. The optimal parameters are selected by mean relative error (MRE) and correlation coefficient (CC) indices according to optimization criteria. Real hydrological time series are taken to examine the new method. The prediction results indicate that CBOPM can choose the optimal parameters adaptively in the prediction process. Compared with several LLPM models, the CBOPM has higher prediction accuracy in predicting hydrological time series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.