Abstract
We propose a chaotic associative memory for sequential patterns (CAMSP). The proposed CAMSP is based on a chaotic associative memory composed of chaotic neurons. In the conventional chaotic neural network, when a stored pattern is given to the network as an external input continuously, the input pattern is searched. The CAM makes use of this property in order to separate the superimposed patterns. In this research, the CAM is applied to associations for sequential patterns. The proposed model has the following features: 1) it can deal with associations for the sequential patterns; 2) it can realize associations by considering patterns' history; and 3) it is robust for noisy input. A series of computer simulations shows the effectiveness of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.