Abstract

This paper presents the nonlinear analysis of functionally graded curved panels under high temperature supersonic gas flows. The aerothermoelastic governing equations are determined via Hamilton's variational principle. The von Karman nonlinear strain–displacement relations are used to account for large deflections. The material properties are assumed to be temperature-dependent and varying through the thickness direction according to a power law distribution in terms of the volume fractions of the constituent components. The panel is assumed to be infinitely long and simply supported. The Galerkin method is applied to convert the partial differential governing equation into a set of ordinary differential equations and the resulting system of nonlinear equations is solved through a numerical integration scheme. The effects of volume fraction index, curved panel height-rise, and aerodynamic pressure, in conjunction with the applied thermal loading, on the dynamical behavior of the panel are investigated. Regular and chaotic motions regime are determined through bifurcation analysis using Poincaré maps of maximum panel deflection, panel time history, phase-space and frequency spectra as qualitative tools, while Lyapunov's exponents and dimension are used as quantitative tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call