Abstract

Electroretinogram (ERG) is a time-varying potential which arises from different layers of retina. To be specific, all the physiological signals may contain some useful information which is not visible to our naked eye. However this subtle information is difficult to monitor directly. Therefore the ERG signal features which are extracted and analyzed using computers are highly useful for diagnosis. This work discusses the chaotic aspect of the ERG signal for the controls, congenital stationary night blindness (CSNB), and cone-rod dystrophy (CRD) classes. In this work, nonlinear parameters like Hurst exponent (HE), the largest Lyapunov exponent (LLE), Higuchi's fractal dimension (HFD), and approximate entropy (ApEn) are analyzed for the three different classes. It is found that the measures like HE dimension and ApEn are higher for controls as compared to the other two classes. But LLE shows no distinguishable variation for the three cases. We have also analyzed the recurrence plots and phase-space plots which shows a drastic variation among the three groups. The results obtained show that the ERG signal is highly complex for the control groups and less complex for the abnormal classes with P value less than 0.05.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.