Abstract

The shallow coastal water of the Enshu-Nada Sea (ENSW) recirculates regardless of whether the Kuroshio path is straight or has meanders. The recirculation is formed as a result of flow separation at the sharp coastline. The outputs of a recent numerical simulation of the Kuroshio current, including case of a short-term meander caused by an anticyclonic eddy, were analysed to track the motion of the ENSW. In contrast to the steady-flow cases, the unsteady cases showed that the ENSW discharges into the Kuroshio Extension region and intrudes further north into the Kuroshio-Oyashio confluence region due to chaotic advection. Two hyperbolic stagnation points of the velocity field characterise the transport paths; one south of the Izu peninsula and the other at the Kuroshio Extension. This mechanism exists even without the Ekman drift and may play an important role in the transportation of the fish eggs and larvae from the southern Japan spawning ground to the food abundant Kuroshio-Oyashio transition zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call