Abstract

Dynamical and statistical properties of tracer advection are studied in a family of flows produced by three point-vortices of different signs. Tracer dynamics is analyzed by numerical construction of Poincaré sections, and is found to be strongly chaotic: advection pattern in the region around the center of vorticity is dominated by a well developed stochastic sea, which grows as the vortex system's initial conditions are set closer to those leading to the collapse of the vortices; at the same time, the islands of regular motion around vortices, known as vortex cores, shrink. An estimation of the core's radii from the minimum distance of vortex approach to each other is obtained. Tracer transport was found to be anomalous: for all of the three numerically investigated cases, the variance of the tracer distribution grows faster than a linear function of time, corresponding to a superdiffusive regime. The transport exponent varies with time decades, implying the presence of multi-fractal transport features. Yet, its value is never too far from 3/2, indicating some kind of universality. Statistics of Poincaré recurrences is non-Poissonian: distributions have long power-law tails. The anomalous properties of tracer statistics are the result of the complex structure of the advection phase space, in particular, of strong stickiness on the boundaries between the regions of chaotic and regular motion. The role of the different phase space structures involved in this phenomenon is analyzed. Based on this analysis, a kinetic description is constructed, which takes into account different time and space scalings by using a fractional equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.