Abstract

The dynamics of Lagrangian particles in a complex geometry is studied, both experimentally and through a full numerical simulation of the Navier–Stokes equations. The geometry is an annulus whose walls can be rotated independently. Stationary cylindrical rods can be positioned within the annulus in several arrangements. A variety of heteroclinic orbits are found at low Reynolds numbers, where the fluid flow is steady. As the flow becomes unsteady to a time-periodic (two-dimensional) state, it spontaneously gives rise to heteroclinic tangles that provide the organizing structure for the chaotic motion of fluid particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.