Abstract

Motivated by the roll-switching behavior observed in rotating Rayleigh-Benard convection, we define a Küppers-Lortz (K-L) state as a volume-preserving flow with periodic roll switching. For an individual roll state, the Lagrangian particle trajectories are periodic. In a system with roll-switching, the particles can exhibit three-dimensional, chaotic motion. We study a simple phenomenological map that models the Lagrangian dynamics in a K-L state. When the roll axes differ by 120 degrees in the plane of rotation, we show that the phase space is dominated by invariant tori if the ratio of switching time to roll turnover time is small. When this parameter approaches zero these tori limit onto the classical hexagonal convection patterns, and, as it gets large, the dynamics becomes fully chaotic and well mixed. For intermediate values, there are interlinked toroidal and poloidal structures separated by chaotic regions. We also compute the exit time distributions and show that the unbounded chaotic orbits are normally diffusive. Although the map presumes instantaneous switching between roll states, we show that the qualitative features of the flow persist when the model has smooth, overlapping time-dependence for the roll amplitudes (the Busse-Heikes model).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call