Abstract

We explore the transition to chaos in a prototypical hydrodynamic oscillator, namely a globally unstable low-density jet subjected to external time-periodic forcing. As the forcing strengthens at an off-resonant frequency, we find that the jet exhibits a sequence of nonlinear states: period-1 limit cycle $\rightarrow $ quasiperiodicity $\rightarrow$ intermittency $\rightarrow$ low-dimensional chaos. We show that the intermittency obeys type-II Pomeau–Manneville dynamics by analysing the first return map and the scaling properties of the quasiperiodic lifetimes between successive chaotic epochs. By providing experimental evidence of the type-II intermittency route to chaos in a globally unstable jet, this study reinforces the idea that strange attractors emerge via universal mechanisms in open self-excited flows, facilitating the development of instability control strategies based on chaos theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call