Abstract

In this work, we study the dynamics and synchronization of a chaotic system describes the Modified Autonomous Van der Pol-Duffing (MAVPD) circuit. The detailed bifurcation diagrams are given to show the rich dynamics of the proposed system. Lyapunov exponents are calculated to verify the existence of chaos in this system. Chaos synchronization of MAVPD system is obtained using active control method. According to the qualitative theory of fractional differential equations, the existence and uniqueness of solutions for a class of commensurate fractional-order MAVPD systems are investigated. Furthermore, based on the stability theory of fractional-order systems, the conditions of local stability of linear fractional-order system are discussed. Moreover, the existence of chaotic behaviors in the fractional-order MAVPD system is shown. A necessary condition for this system to remain chaotic is obtained. It is found that chaos exists in this system with order less than three. Phase synchronization of the fractional-order MAVPD system is also achieved using an active control technique. Numerical simulations show the effectiveness of the proposed synchronization schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call