Abstract

Based on some essential concepts of fractional calculus and the theorem related to the fractional extension of Lyapunov direct method, we present in this paper a synchronization scheme of fractional-order Lur’e systems. A quadratic Lyapunov function is chosen to derive the synchronization criterion. The derived criterion is a suffcient condition for the asymptotic stability of the error system, formulated in the form of linear matrix inequality (LMI). The controller gain can be achieved by solving the LMI. The proposed scheme is illustrated for fractional-order Chua’s circuits and fractional-order four-cell CNN. Numerical results, which agree well with the proposed theorem, are given to show the effectiveness of this scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.