Abstract

Chaos synchronization characteristics in the master–slave and slave–slave systems with modulated erbium-doped fiber lasers are investigated numerically. We find that synchronization state of chaos becomes better, i.e., the correlation coefficient between the two outputs reaches unity, as the difference in the input power between the two subsystems decreases and is not dependent strongly upon the difference in the modulation index in both the master–slave and slave–slave systems. In the master–slave system, the highest correlation coefficient is attained at the smaller pump power and the larger modulation index in the slave subsystem than those in the master subsystem. On the other hand, the correlation coefficient equal to unity is achieved with the identical parameters in the slave 1 and 2 subsystems in the slave–slave system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.