Abstract

This paper introduces an adaptive control scheme for chaos suppression of non-autonomous chaotic rotational machine systems with fully unknown parameters in finite time. To estimate the system unknown parameters, some adaptation laws are proposed. Using the adaptation laws and Lyapunov control theory, an adaptive robust controller is derived to suppress the chaos of non-autonomous centrifugal flywheel governor systems in a given finite time. Some mathematical approaches are presented to prove the finite-time stability and convergence of the proposed method. The exact value of the convergence time is also given. A numerical simulation is provided to illustrate the usefulness and effectiveness of the introduced algorithm and to verify the theoretical results of the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call